Fixup Satisfaction75 bootprocess. (#12621)

- Use normal ChibiOS I2C driver.
- Move drawing code to housekeeping -- previously it was during matrix
  scan, which gets executed during bootmagic checks. However, bootmagic
  is invoked before QWIIC subsystem is enabled, which means I2C isn't
  configured yet. All I2C calls to the OLED fail with timeouts while
  bootmagic is being checked. Housekeeping ensures this is executed once
  the system has initialised and settled.
- QWIIC OLED driver: properly clear out OLED buffer when clearing screen.
This commit is contained in:
Nick Brassel 2021-04-19 13:08:01 +10:00 committed by GitHub
parent eb7e668eb9
commit a0089aa345
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 15 additions and 125 deletions

View File

@ -206,6 +206,8 @@ void clear_screen(void) {
send_data(0); send_data(0);
} }
} }
memset(micro_oled_screen_current, 0, LCDWIDTH * LCDHEIGHT / 8);
} }
/** \brief Clear SSD1306's memory. /** \brief Clear SSD1306's memory.

View File

@ -51,6 +51,18 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
/* define if matrix has ghost */ /* define if matrix has ghost */
//#define MATRIX_HAS_GHOST //#define MATRIX_HAS_GHOST
// I2C config
#define I2C_DRIVER I2CD1
#define I2C1_SCL_BANK GPIOB
#define I2C1_SCL 6
#define I2C1_SDA 7
#define I2C1_SCL_PAL_MODE 1
#define I2C1_SDA_PAL_MODE 1
#define I2C1_TIMINGR_PRESC 0x00U
#define I2C1_TIMINGR_SCLDEL 0x03U
#define I2C1_TIMINGR_SDADEL 0x01U
#define I2C1_TIMINGR_SCLH 0x03U
#define I2C1_TIMINGR_SCLL 0x09U
/* Set 0 if debouncing isn't needed */ /* Set 0 if debouncing isn't needed */
#define DEBOUNCE 5 #define DEBOUNCE 5

View File

@ -1,124 +0,0 @@
/* Copyright 2018 Jack Humbert
* Copyright 2018 Yiancar
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/* This library is only valid for STM32 processors.
* This library follows the convention of the AVR i2c_master library.
* As a result addresses are expected to be already shifted (addr << 1).
* I2CD1 is the default driver which corresponds to pins B6 and B7. This
* can be changed.
* Please ensure that HAL_USE_I2C is TRUE in the halconf.h file and that
* STM32_I2C_USE_I2C1 is TRUE in the mcuconf.h file. Pins B6 and B7 are used
* but using any other I2C pins should be trivial.
*/
#include "i2c_master.h"
#include "quantum.h"
#include <string.h>
#include <hal.h>
static uint8_t i2c_address;
// This configures the I2C clock to 400khz assuming a 48Mhz clock
// For more info : https://www.st.com/en/embedded-software/stsw-stm32126.html
static const I2CConfig i2cconfig = {
STM32_TIMINGR_PRESC(0x00U) |
STM32_TIMINGR_SCLDEL(0x03U) | STM32_TIMINGR_SDADEL(0x01U) |
STM32_TIMINGR_SCLH(0x03U) | STM32_TIMINGR_SCLL(0x09U),
0,
0
};
static i2c_status_t chibios_to_qmk(const msg_t status) {
switch (status) {
case I2C_NO_ERROR:
return I2C_STATUS_SUCCESS;
case I2C_TIMEOUT:
return I2C_STATUS_TIMEOUT;
// I2C_BUS_ERROR, I2C_ARBITRATION_LOST, I2C_ACK_FAILURE, I2C_OVERRUN, I2C_PEC_ERROR, I2C_SMB_ALERT
default:
return I2C_STATUS_ERROR;
}
}
__attribute__ ((weak))
void i2c_init(void)
{
// Try releasing special pins for a short time
palSetPadMode(GPIOB, 6, PAL_MODE_INPUT);
palSetPadMode(GPIOB, 7, PAL_MODE_INPUT);
chThdSleepMilliseconds(10);
palSetPadMode(GPIOB, 6, PAL_MODE_ALTERNATE(1) | PAL_STM32_OTYPE_OPENDRAIN);
palSetPadMode(GPIOB, 7, PAL_MODE_ALTERNATE(1) | PAL_STM32_OTYPE_OPENDRAIN);
//i2cInit(); //This is invoked by halInit() so no need to redo it.
}
i2c_status_t i2c_start(uint8_t address)
{
i2c_address = address;
i2cStart(&I2C_DRIVER, &i2cconfig);
return I2C_STATUS_SUCCESS;
}
i2c_status_t i2c_transmit(uint8_t address, const uint8_t* data, uint16_t length, uint16_t timeout)
{
i2c_address = address;
i2cStart(&I2C_DRIVER, &i2cconfig);
i2cAcquireBus(&I2C_DRIVER);
msg_t status = i2cMasterTransmitTimeout(&I2C_DRIVER, (i2c_address >> 1), data, length, 0, 0, TIME_MS2I(timeout));
i2cReleaseBus(&I2C_DRIVER);
return chibios_to_qmk(status);
}
i2c_status_t i2c_receive(uint8_t address, uint8_t* data, uint16_t length, uint16_t timeout)
{
i2c_address = address;
i2cStart(&I2C_DRIVER, &i2cconfig);
msg_t status = i2cMasterReceiveTimeout(&I2C_DRIVER, (i2c_address >> 1), data, length, TIME_MS2I(timeout));
return chibios_to_qmk(status);
}
i2c_status_t i2c_writeReg(uint8_t devaddr, uint8_t regaddr, const uint8_t* data, uint16_t length, uint16_t timeout)
{
i2c_address = devaddr;
i2cStart(&I2C_DRIVER, &i2cconfig);
uint8_t complete_packet[length + 1];
for(uint8_t i = 0; i < length; i++)
{
complete_packet[i+1] = data[i];
}
complete_packet[0] = regaddr;
msg_t status = i2cMasterTransmitTimeout(&I2C_DRIVER, (i2c_address >> 1), complete_packet, length + 1, 0, 0, TIME_MS2I(timeout));
return chibios_to_qmk(status);
}
i2c_status_t i2c_readReg(uint8_t devaddr, uint8_t regaddr, uint8_t* data, uint16_t length, uint16_t timeout)
{
i2c_address = devaddr;
i2cStart(&I2C_DRIVER, &i2cconfig);
msg_t status = i2cMasterTransmitTimeout(&I2C_DRIVER, (i2c_address >> 1), &regaddr, 1, data, length, TIME_MS2I(timeout));
return chibios_to_qmk(status);
}
void i2c_stop(void)
{
i2cStop(&I2C_DRIVER);
}

View File

@ -380,7 +380,7 @@ void matrix_init_kb(void)
} }
void matrix_scan_kb(void) { void housekeeping_task_kb(void) {
rtcGetTime(&RTCD1, &last_timespec); rtcGetTime(&RTCD1, &last_timespec);
uint16_t minutes_since_midnight = last_timespec.millisecond / 1000 / 60; uint16_t minutes_since_midnight = last_timespec.millisecond / 1000 / 60;