qmk/drivers/sensors/pimoroni_trackball.c

95 lines
3.5 KiB
C

/* Copyright 2020 Christopher Courtney, aka Drashna Jael're (@drashna) <drashna@live.com>
* Copyright 2021 Dasky (@daskygit)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "pointing_device_internal.h"
#include "pimoroni_trackball.h"
#include "i2c_master.h"
#include "timer.h"
// clang-format off
#define PIMORONI_TRACKBALL_REG_LED_RED 0x00
#define PIMORONI_TRACKBALL_REG_LED_GRN 0x01
#define PIMORONI_TRACKBALL_REG_LED_BLU 0x02
#define PIMORONI_TRACKBALL_REG_LED_WHT 0x03
#define PIMORONI_TRACKBALL_REG_LEFT 0x04
#define PIMORONI_TRACKBALL_REG_RIGHT 0x05
#define PIMORONI_TRACKBALL_REG_UP 0x06
#define PIMORONI_TRACKBALL_REG_DOWN 0x07
// clang-format on
static uint16_t precision = 128;
uint16_t pimoroni_trackball_get_cpi(void) {
return (precision * 125);
}
/**
* @brief Sets the scaling value for pimoroni trackball
*
* Sets a scaling value for pimoroni trackball to allow runtime adjustment. This isn't used by the sensor and is an
* approximation so the functions are consistent across drivers.
*
* NOTE: This rounds down to the nearest number divisable by 125 that's a positive integer, values below 125 are clamped to 125.
*
* @param cpi uint16_t
*/
void pimoroni_trackball_set_cpi(uint16_t cpi) {
if (cpi < 249) {
precision = 1;
} else {
precision = (cpi - (cpi % 125)) / 125;
}
}
void pimoroni_trackball_set_rgbw(uint8_t r, uint8_t g, uint8_t b, uint8_t w) {
uint8_t data[4] = {r, g, b, w};
__attribute__((unused)) i2c_status_t status = i2c_writeReg(PIMORONI_TRACKBALL_ADDRESS << 1, PIMORONI_TRACKBALL_REG_LED_RED, data, sizeof(data), PIMORONI_TRACKBALL_TIMEOUT);
pd_dprintf("Trackball RGBW i2c_status_t: %d\n", status);
}
i2c_status_t read_pimoroni_trackball(pimoroni_data_t* data) {
i2c_status_t status = i2c_readReg(PIMORONI_TRACKBALL_ADDRESS << 1, PIMORONI_TRACKBALL_REG_LEFT, (uint8_t*)data, sizeof(*data), PIMORONI_TRACKBALL_TIMEOUT);
#ifdef POINTING_DEVICE_DEBUG
static uint16_t d_timer;
if (timer_elapsed(d_timer) > PIMORONI_TRACKBALL_DEBUG_INTERVAL) {
pd_dprintf("Trackball READ i2c_status_t: %d L: %d R: %d Up: %d D: %d SW: %d\n", status, data->left, data->right, data->up, data->down, data->click);
d_timer = timer_read();
}
#endif
return status;
}
__attribute__((weak)) void pimoroni_trackball_device_init(void) {
i2c_init();
pimoroni_trackball_set_rgbw(0x00, 0x00, 0x00, 0x00);
}
int16_t pimoroni_trackball_get_offsets(uint8_t negative_dir, uint8_t positive_dir, uint8_t scale) {
uint8_t offset = 0;
bool isnegative = false;
if (negative_dir > positive_dir) {
offset = negative_dir - positive_dir;
isnegative = true;
} else {
offset = positive_dir - negative_dir;
}
uint16_t magnitude = (scale * offset * offset * precision) >> 7;
return isnegative ? -(int16_t)(magnitude) : (int16_t)(magnitude);
}